946 research outputs found

    Short note on two output-dependent hidden Markov models

    Get PDF
    The purpose of this note is to study the assumption of mutual information independence", which is used by Zhou (2005) for deriving an output-dependent hidden Markov model, the so-called discriminative HMM (D-HMM), in the context of determining a stochastic optimal sequence of hidden states. The assumption is extended to derive its generative counterpart, the G-HMM. In addition, state-dependent representations for two output-dependent HMMs, namely HMMSDO (Li, 2005) and D-HMM, are presented

    Learning Local Metrics and Influential Regions for Classification

    Get PDF
    The performance of distance-based classifiers heavily depends on the underlying distance metric, so it is valuable to learn a suitable metric from the data. To address the problem of multimodality, it is desirable to learn local metrics. In this short paper, we define a new intuitive distance with local metrics and influential regions, and subsequently propose a novel local metric learning method for distance-based classification. Our key intuition is to partition the metric space into influential regions and a background region, and then regulate the effectiveness of each local metric to be within the related influential regions. We learn local metrics and influential regions to reduce the empirical hinge loss, and regularize the parameters on the basis of a resultant learning bound. Encouraging experimental results are obtained from various public and popular data sets

    A Survey on Deep Generative 3D-aware Image Synthesis

    Get PDF
    Recent years have seen remarkable progress in deep learning powered visual content creation. This includes deep generative 3D-aware image synthesis, which produces high-fidelity images in a 3D-consistent manner while simultaneously capturing compact surfaces of objects from pure image collections without the need for any 3D supervision, thus bridging the gap between 2D imagery and 3D reality. The field of computer vision has been recently captivated by the task of deep generative 3D-aware image synthesis, with hundreds of papers appearing in top-tier journals and conferences over the past few years (mainly the past two years), but there lacks a comprehensive survey of this remarkable and swift progress. Our survey aims to introduce new researchers to this topic, provide a useful reference for related works, and stimulate future research directions through our discussion section. Apart from the presented papers, we aim to constantly update the latest relevant papers along with corresponding implementations at https://weihaox.github.io/3D-aware-Gen

    A Survey on Deep Generative 3D-aware Image Synthesis

    Get PDF
    Recent years have seen remarkable progress in deep learning powered visual content creation. This includes deep generative 3D-aware image synthesis, which produces high-idelity images in a 3D-consistent manner while simultaneously capturing compact surfaces of objects from pure image collections without the need for any 3D supervision, thus bridging the gap between 2D imagery and 3D reality. The ield of computer vision has been recently captivated by the task of deep generative 3D-aware image synthesis, with hundreds of papers appearing in top-tier journals and conferences over the past few years (mainly the past two years), but there lacks a comprehensive survey of this remarkable and swift progress. Our survey aims to introduce new researchers to this topic, provide a useful reference for related works, and stimulate future research directions through our discussion section. Apart from the presented papers, we aim to constantly update the latest relevant papers along with corresponding implementations at this https URL [https://weihaox.github.io/3D-aware-Gen]

    Domain Fingerprints for No-reference Image Quality Assessment

    Get PDF
    Human fingerprints are detailed and nearly unique markers of human identity. Such a unique and stable fingerprint is also left on each acquired image. It can reveal how an image was degraded during the image acquisition procedure and thus is closely related to the quality of an image. In this work, we propose a new no-reference image quality assessment (NR-IQA) approach called domain-aware IQA (DA-IQA), which for the first time introduces the concept of domain fingerprint to the NR-IQA field. The domain fingerprint of an image is learned from image collections of different degradations and then used as the unique characteristics to identify the degradation sources and assess the quality of the image. To this end, we design a new domain-aware architecture, which enables simultaneous determination of both the distortion sources and the quality of an image. With the distortion in an image better characterized, the image quality can be more accurately assessed, as verified by extensive experiments, which show that the proposed DA-IQA performs better than almost all the compared state-of-the-art NR-IQA methods.Comment: accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Survival Analysis of High-Dimensional Data With Graph Convolutional Networks and Geometric Graphs

    Get PDF
    This article proposes a survival model based on graph convolutional networks (GCNs) with geometric graphs directly constructed from high-dimensional features. First, we clarify that the graphs used in GCNs play an important role in processing the relational information of samples, and the graphs that align well with the underlying data structure could be beneficial for survival analysis. Second, we show that sparse geometric graphs derived from high-dimensional data are more favorable compared with dense graphs when used in GCNs for survival analysis. Third, from this insight, we propose a model for survival analysis based on GCNs. By using multiple sparse geometric graphs and a proposed sequential forward floating selection algorithm, the new model is able to simultaneously perform survival analysis and unveil the local neighborhoods of samples. The experimental results on real-world datasets show that the proposed survival analysis approach based on GCNs outperforms a variety of existing methods and indicate that geometric graphs can aid survival analysis of high-dimensional data
    • …
    corecore